
Auto-formalizations with LLMs

Students: Siyuan (James) Ge, Henry Adams, Attila Jamilov,
Elizabeth Wang
Mentors: Zihong Lin, Vasily Ilin

Overview
LLM-powered A*-search of

formalised Lean proofs

● Towards an artificial mathematician

● Example

● Evaluation on the minif2f dataset

● Experiments with search heuristics

● Experiments with LLM parameters

Language models + Lean = 💙
Language models are creative but prone
to hallucination.

Lean is tedious but does not allow
mistakes.

Can “ground” LM’s thinking by using
feedback from Lean.

Goal: create an artificial mathematician.

Tree-based search
● Each step of the proof is a node
● Steps are suggested by an LLM

(GPT-4o, Claude 3.5, Grok 3)
● A heuristic determines which nodes to

pursue further and which to abandon

A look at the tactic suggestions
To prove: theorem mathd_algebra_171 (f : ℝ → ℝ) (h₀ : ∀x, f x = 5 * x + 4) : f 1 = 9,

we used the LeanDojo model. This model takes the current goal state as input,
and provides a number of tactics out.

The benefit of this model is that it runs locally and is trained on Lean.

A look at the tactic suggestions
The weights represent how many turns it took
to generate this tactic to make progress upon
the goal state.

It took about 4 calls to the model to prove this
example. The tactics the model chose are:

 rw [← sub_eq_zero, h₀]

 norm_num

Evaluations on the miniF2F dataset
- miniF2F: formalized Olympic-level benchmark in algebra and number theory
- Our results: we did pass some problems but …

- Out of Steps = Reached the maximum search step
- Out of States = No more search states to explore

Evaluations on the miniF2F dataset
- Current search is short-view and

can only solve simple problems
- With only 1 or 2 lines of proof
- Relying on built-in goal-solving

tactics: norm_num, linarith …

When the search tree has a high branching factor, we
need to be able to evaluate which proof states are
"better" than others. We have a few options:

- Trivial Heuristic: If a proof state contains many
goals, it should be harder to prove

- Log Probabilities: We can take the probabilities
of different LLM suggestions as a measure of
confidence

- Cosine Similarity: We embed hypotheses and
goals in a high dimensional space, then compare
them as vectors

Experimenting with heuristics in tree-search

Experiments with LLMs

Model Temperature Predicted
Next Steps

gpt-4o-mini 1.2 rw [h₀ 1]
simp [h₀ 1]
rewrite h₀ 1

gpt-4o-mini 1.4 rw [h₀ 1]
rw [h₀ 1]
rewrite h₀ 1

gpt-4o-mini 1.5 rw h₀ 1
rw [h₀ 1]
rewrite h₀ 1

Model Temperature Predicted
Next Steps

o3-mini 0.5 rw [h₀]
rw [h₀ 1]
rw [h₀]

o3-mini 1.2 rw [h₀]
rw [h₀]
rw [h₀ 1]

o3-mini 2 rw [h₀]
rw [h₀ 1]
rw [h₀]

Model Temperature Predicted
Next Steps

deepseek-re
asoner

0.5 rw [h₀]

deepseek-re
asoner

0.7 rw [h₀]

deepseek-re
asoner

1 rw [h₀]

Model Temperature Predicted
Next Steps

gemini-2.0-fl

ash

0.8 rw [h₀]
rw [h₀]
rw [h₀]

gemini-2.0-fl

ash

1.3 specialize h₀ 1
rw [h₀]
rw [h₀]

gemini-2.0-fl

ash

1.8 exact h₀ 1
rw [h₀ 1]
rw [h₀]

Experiments with LLMs

Model Temperature Predicted
Next Steps

gpt-4o-mini 0.7 norm_num
norm_num
linarith

gpt-4o-mini 1.3 linarith
linarith
norm_num

gpt-4o-mini 1.4 linarith
simp [h₀ 1]
norm_num

Model Temperature Predicted
Next Steps

o3-mini 0.5 norm_num
norm_num
norm_num

o3-mini 1.2 norm_num
norm_num
norm_num

o3-mini 2 norm_num
norm_num
norm_num

Model Temperature Predicted
Next Steps

deepseek-re
asoner

0.5 norm_num

deepseek-re
asoner

1 norm_num

deepseek-re
asoner

1.5 norm_num

Model Temperature Predicted
Next Steps

gemini-2.0-fl

ash

1 simp
simp
norm_num

gemini-2.0-fl

ash

1.4 norm_num
simp
simp

gemini-2.0-fl

ash

1.8 norm_num
simp
simp

Previous tactics:
rw [h₀]

Future Plans
● More experiments:

○ Better LLM prompting
○ RAG
○ Diffusion-based LLMs
○ More sophisticated heuristics
○ More compute: 2000 steps instead of 20

● Sketching, drafting
● RL fine tuning

