Auto-formalizations with LLMs

Students: Siyuan (James) Ge, Henry Adams, Attila Jamilov, Elizabeth Wang Mentors: Zihong Lin, Vasily Ilin

Overview

LLM-powered A*-search of formalised Lean proofs

- Towards an artificial mathematician
- Example
- Evaluation on the minif2f dataset
- Experiments with search heuristics
- Experiments with LLM parameters

Language models + Lean = \heartsuit

Language models are creative but prone to hallucination.

Lean is tedious but does not allow mistakes.

Can "ground" LM's thinking by using feedback from Lean.

Goal: create an artificial mathematician.

Tree-based search

- Each step of the proof is a node
- Steps are suggested by an LLM (GPT-40, Claude 3.5, Grok 3)
- A heuristic determines which nodes to pursue further and which to abandon

A look at the tactic suggestions

To prove: theorem mathd_algebra_171 (f : $\mathbb{R} \rightarrow \mathbb{R}$) (h₀ : $\forall x$, f x = 5 * x + 4) : f 1 = 9,

we used the LeanDojo model. This model takes the current goal state as input, and provides a number of tactics out.

The benefit of this model is that it runs locally and is trained on Lean.

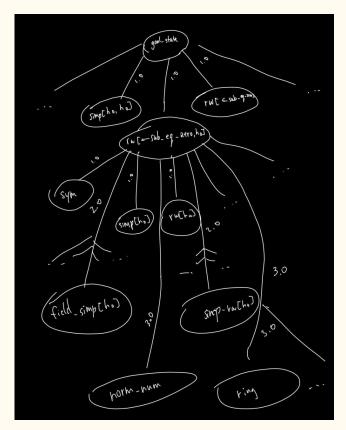
A look at the tactic suggestions

The weights represent how many turns it took to generate this tactic to make progress upon the goal state.

It took about 4 calls to the model to prove this example. The tactics the model chose are:

rw [\leftarrow sub_eq_zero, h₀]

norm_num



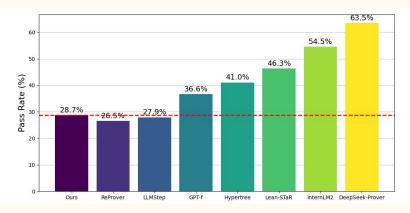
Evaluations on the miniF2F dataset

- miniF2F: formalized Olympic-level benchmark in algebra and number theory
- Our results: we did pass some problems but ...
 - Out of Steps = Reached the maximum search step
 - Out of States = No more search states to explore

	Count	Pass	Pass Rate	Out of Steps	Out of States	Others
IMO	20	0	0.00%	14	6	0
AIME	15	1	6.67%	12	2	0
AMC12	45	4	8.89%	34	4	3
$MATH_algebra$	70	32	45.71%	35	3	0
MATH_numbertheory	60	33	55.00%	21	5	1
Custom_algebra	18	0	0.00%	12	6	0
Custom_numbertheory	8	0	0.00%	7	1	0
Custom_induction	8	0	0.00%	5	2	1
Total	244	70	28.69%	140	29	5

Evaluations on the miniF2F dataset

- Current search is short-view and can only solve simple problems
 - With only 1 or 2 lines of proof
 - Relying on built-in goal-solving tactics: norm_num, linarith ...

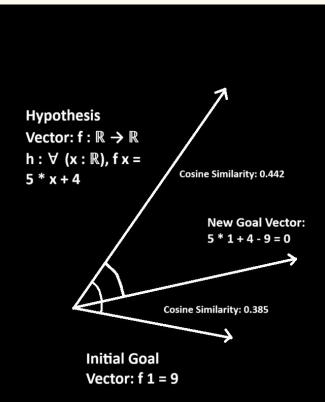


Search Step	Count		Tactic	Count
1	58		norm_num	30
2	5		linarith	15
3	2		omega	11
4	4		simp	6
5	5 1		ring	5
			nlinarith	3
			$field_simp$	3
			rfl	3
D (1)	0 1		rw	3
Proof Line	Count		symm	1
1	58		\mathbf{subst}	1
2	12		have	1

Experimenting with heuristics in tree-search

When the search tree has a high branching factor, we need to be able to evaluate which proof states are "better" than others. We have a few options:

- Trivial Heuristic: If a proof state contains many goals, it should be harder to prove
- Log Probabilities: We can take the probabilities of different LLM suggestions as a measure of confidence
- Cosine Similarity: We embed hypotheses and goals in a high dimensional space, then compare them as vectors



Experiments with LLMs

theorem mathd_algebra_171

(f :
$$\mathbb{R} \to \mathbb{R}$$
)
(h₀ : $\forall x$, f x = 5 * x + 4) :
f 1 = 9 := by

Model	Temperature	Predicted Next Steps
deepseek-re asoner	0.5	rw [h₀]
deepseek-re asoner	0.7	rw [h₀]
deepseek-re asoner	1	rw [h₀]

Model	Temperature	Predicted Next Steps	Model	Temperature	Predicted Next Steps	Model	Temperature	Predicted Next Steps
gpt-4o-mini	1.2	rw [h₀ 1] simp [h₀ 1] rewrite h₀ 1	o3-mini	0.5	rw [h₀] rw [h₀ 1] rw [h₀]	gemini-2.0-fl ash	0.8	rw [h₀] rw [h₀] rw [h₀]
gpt-4o-mini	1.4	rw [h₀ 1] rw [h₀ 1] rewrite h₀ 1	o3-mini	1.2	rw [h₀] rw [h₀] rw [h₀ 1]	gemini-2.0-fl ash	1.3	specialize h₀ 1 rw [h₀] rw [h₀]
gpt-4o-mini	1.5	rw h₀ 1 rw [h₀ 1] rewrite h₀ 1	o3-mini	2	rw [h₀] rw [h₀ 1] rw [h₀]	gemini-2.0-fl ash	1.8	exact h₀ 1 rw [h₀ 1] rw [h₀]

Experiments with LLMs

theorem mathd_algebra_171

(f :
$$\mathbb{R} \to \mathbb{R}$$
)
(h₀ : ∀x, f x = 5 * x + 4)
f 1 = 9 := by

Model	Temperature	Predicted Next Steps
deepseek-re asoner	0.5	norm_num
deepseek-re asoner	1	norm_num
deepseek-re asoner	1.5	norm_num

Model	Temperature	Predicted Next Steps	Model	Temperature	Predicted Next Steps	Model	Temperature	Predicted Next Steps
gpt-4o-mini	0.7	norm_num norm_num linarith	o3-mini	0.5	norm_num norm_num norm_num	gemini-2.0-fl ash	1	simp simp norm_num
gpt-4o-mini	1.3	linarith linarith norm_num	o3-mini	1.2	norm_num norm_num norm_num	gemini-2.0-fl ash	1.4	norm_num simp simp
gpt-4o-mini	1.4	linarith simp [h₀ 1] norm_num	o3-mini	2	norm_num norm_num norm_num	gemini-2.0-fl ash	1.8	norm_num simp simp

Previous tactics: rw [h₀]

Future Plans

- More experiments:
 - Better LLM prompting
 - RAG
 - $\circ \quad {\rm Diffusion\text{-}based \ LLMs}$
 - \circ More sophisticated heuristics
 - \circ $\,$ More compute: 2000 steps instead of 20 $\,$
- Sketching, drafting
- RL fine tuning